Estudo da Reta, Segmento de Reta e Semirreta
Aprendendo sobre a Reta
A reta é formada por infinitos pontos que estão alinhados. Ela é ilimitada nos dois sentidos. Quando construímos uma reta devemos utilizar letras minúsculas para representá-la. Observe:
Uma reta pode ser construída em três posições: horizontal, vertical ou inclinada.
Horizontal
Horizontal
Vertical
Inclinada
Duas ou mais retas podem ter as seguintes posições:
Concorrentes
Retas concorrentes possuem um ponto em comum, pois elas se cruzam.
Paralelas
As retas paralelas não possuem ponto em comum.
As retas paralelas não possuem ponto em comum.
Segmento de Reta
O segmento de reta é limitado por dois pontos da reta. Observe:
O segmento de reta é limitado por dois pontos da reta. Observe:
A parte entre os pontos A e B é chamado de segmento de reta. Veja mais segmentos de reta:
Semirreta
A semirreta possui origem, mas é ilimitada no outro sentido, isso é, possui início, mas não tem fim.
A semirreta possui origem, mas é ilimitada no outro sentido, isso é, possui início, mas não tem fim.
Por Marcos Noé
Matemático
Equipe Escola Kids
Matemático
Equipe Escola Kids
No estudo analítico da reta não podemos deixar de falar das posições relativas entre retas. Dadas duas ou mais retas do plano, elas podem ser paralelas, concorrentes, coincidentes ou concorrentes perpendiculares. Abordaremos aqui o paralelismo de retas, assunto que sempre intrigou matemáticos de todas as épocas. Sabemos que duas retas são paralelas quando são equidistantes durante toda sua extensão, não possuindo nenhum ponto em comum.
Dessa forma, considere duas retas, r e s, no plano cartesiano.
As retas r e s são paralelas se, e somente se, possuírem a mesma inclinação ou seus coeficientes angulares forem iguais.
Utilizando a linguagem matemática:
Uma maneira mais simples de verificar se duas retas são paralelas é comparar seus coeficientes angulares: se forem iguais as retas são paralelas.
Exemplo 1. Verifique se as retas r: 2x + 3y – 7 = 0 e s: – 10x – 15y + 45 = 0 são paralelas.
Solução: Vamos determinar o coeficiente angular de cada uma das retas.
Reta r: 2x + 3y – 7 = 0
Para encontrar o coeficiente angular precisamos isolar y na equação geral da reta.
Faremos o mesmo processo para a reta s.
Reta s: – 10x – 15y + 45 = 0
Exemplo 2. Determine a equação geral da reta t que passa pelo ponto P(1, 2) e é paralela à reta r de equação 8x – 2y + 9 = 0.
Solução: para determinar a equação de uma reta basta conhecermos um ponto dessa reta e seu coeficiente angular. Já conhecemos o ponto P(1, 2) da reta procurada, agora resta encontrar o seu coeficiente angular. Como a reta t é paralela à reta s, elas possuem o mesmo coeficiente angular. Assim, utilizando a equação da reta r iremos determinar o coeficiente angular. Segue que:
Podemos afirmar que mt=4. Conhecendo um ponto da reta e seu coeficiente angular, utilizamos a fórmula abaixo para determinar sua equação.
Por Marcelo Rigonatto
Especialista em Estatística e Modelagem Matemática
Equipe Brasil Escola
Retas perpendiculares
A característica mais conhecida de duas retas perpendiculares é que no ponto de intersecção delas é formado um ângulo reto (de medida igual a 90°), mas com o estudo da geometria analítica em cima da análise da reta é possível dizer que duas retas perpendiculares terão os seus coeficientes angulares opostos e inversos.
Considere duas retas r e s, perpendiculares no ponto C, representadas em um plano cartesiano.
Considerando o ângulo de inclinação da reta s como sendo β, então o ângulo de inclinação da reta r será 90° - β. Dessa forma teremos:
Coeficiente angular da reta s: ms = tg β
Coeficiente angular da reta r: mr = tg (90° - β)
Aplicando as fórmulas de adição de arcos é possível comparar o coeficiente angular das duas retas, veja:
tg (90° + β) = sen (90° + β) = sen90° . cos β + sen β . cos β
cos (90° + β) cos90° . cos β – sen 90° . sen β
tg (90° + β) = cos β
-sen β
tg (90° + β) = - 1
tg β
Como ms = tg β e mr = - 1 / tg β, podemos dizer que:
ms = -1 / mr ou ms . mr = -1
Dessa forma, chegamos à conclusão de que em duas retas perpendiculares o coeficiente angular de uma das retas será igual ao oposto do inverso do coeficiente angular da outra
Por Danielle de Miranda
Graduado em Matemática
Equipe Brasil Escola





0 Comentários