Mol – Gases – Estequiometria

MOL
A palavra mol foi utilizada pela primira vez pelo químico Wilhem Ostwald em 1896. Em latim, esta palavra significa mole, que significa”monte”, “quantidade”. A partir desta palavra também originou molécula, que quer dizer pequena quantidade.
Algumas mercadorias são vendidadas em quantidades já definidas, como por exemplo a dúzia (6), a resma (500) e etc.
O mol também determina quantidade. Pode determinar também massa e volume. Veja o esquema a seguir:



O mol indica quantidade. Um mol de qualquer coisa possui 6,02.1023 unidades. É utilizado em química para referir-se à matéria microscópica, já que este número é muito grande. Pode ser usado para quantificar átomos, moléculas, íons, número de elétrons, etc.
O número 6,02.1023 é a constante de Avogadro.
Exemplos:
1 mol de átomos de H tem 6,02.1023 átomos.
2 mol de átomos de H tem 2 x 6,02.1023 átomos = 12,04.1023 átomos de H
O mol indica massa. Um mol de um elemento é igual a sua massa molecular em gramas (g).
Exemplos:
1 mol de água tem 18g
2 mol de água tem 2 x 18 = 36g
O mol indica volume. Na realidade, indica o volume ocupado por um gás nas CNTP (condições normais de temperatura e pressão). Para gases que estão nestas condições, o valor de um mol é 22,4L (litros).
CNTP:
T=0°C = 273K
P = 1atm = 760mmHg
Exemplos:
1 mol de CO2 ocupa que volume nas CNTP? 22,4L
2 mol de CO2 ocupa que volume nas CNTP? 2 x 22,4L = 44,8L
Para gases que não estão nestas condições, utiliza-se a fórmula do Gás Ideal ou Equação de Clapeyron:
P.V = n.R.T
Onde:
P = pressão do gás (atm)
V = volume do gás (L)
n = número de mols do gás (mol)
R = constante de Clapeyron = 0,082atm.L/mol.K
T = temperatura do gás (K)
 ESTEQUIOMETRIA COMUM / ESTEQUIOMETRIA DA FÓRMULA:
Os cálculos estequiométricos são cálculos que relacionam as grandezas e quantidades dos elementos químicos. Utiliza-se muito o conceito de mol nestes cálculos.
É muito importante saber transformar a unidade grama em mol. Pode-se usar a seguinte fórmula:

Onde:
n = número de mol (quantidade de matéria)
m = massa em gramas
MM = massa molar (g/mol)
Exemplo:
Quantas gramas existem em 2 mol de CO2?
                            
Este cálculo pode ser feito também por Regra de Três:
Para os cálculos com regra de três, sempre devemos colocar as unidade iguais uma embaixo da outra, como no exemplo acima.
Outros exemplos de cálculos estequiométricos envolvendo apenas a fórmula química:
  1. Quantos mols há em 90g de H2O?


90 = 18. x
5 mol = x
  1. Quantas moléculas de água há em 3 mol de H2O?

x = 3 . 6,02.1023
x = 18,06. 1023 ou 1,806.1024 moléculas
3) Qual o volume ocupado por 4 mol do gás Cl2 nas CNTP?
x  = 4 x 22,4
x = 89,6L
4) Quantos mols existem em 89,6L do gás CO2 nas CNTP?

x = 4 mol


ESTEQUIOMETRIA DA EQUAÇÃO QUÍMICA
Os cálculos estequiométricos que envolvem uma reação química consiste em encontrar as quantidades de certas substâncias a partir de dados de outras substâncias que participam da mesma reação química.
Estes cálculos são feitos através de proporções. Deve-se levar em conta os coeficientes, que agora serão chamados de coeficientes estequiométricos.
Veja alguns passos que podem ser seguidos para montar e calcular:
1. fazer o balanceamento da equação química (acertar os coeficientes estequiométricos);
2. fazer contagem de mol de cada substância;
3. ler no problema o que pede;
4. relacionar as grandezas;
5. calcular com regra de três (proporção).
Exemplos:
1) 108g de metal alumínio reagem com o ácido sulfúrico, produzindo o sal e hidrogênio, segundo a reação abaixo:

Determine:
a) o balanceamento da equação:
  
Isto quer dizer que 2 mol de Al reage com 3 mol de H2SO4 reagindo com 1 mol de Al2(SO4)3 e 3 mol de H2
b) a massa o ácido sulfúrico necessária para reagir com o alumínio:
1°) passo:                                      2°) passo:  
            
                                         
                         

3°) passo:
 x = 588g de H2SO4
Relacionar a massa de ácido com a massa de alumínio, como no 3° passo. Antes, no 1° e no 2°passo, transformar o número de mol em gramas.


CÁLCULO DE PUREZA
O cálculo de pureza é feito para determinar a quantidade de impurezas que existem nas substâncias.
Estes cálculos são muito utilizados, já que nem todas as substâncias são puras.
Exemplo:
Uma amostra de calcita, contendo 80% de carbonato de cálcio, sofre decomposição quando submetida a aquecimento, de acordo com a reação:
Qual massa de óxido de cálcio obtida a partir da queima de 800g de calcita?
x = 640g de CaCO3  
Para o restante do cálculo, utiliza-se somente o valor de CaCO3  puro, ou seja, 640g.

x = 358,4g de CaO
CÁLCULO DE RENDIMENTO
É comum, nas reações químicas, a quantidade de produto ser inferior ao valor esperado. Neste caso, o rendimento não foi total. Isto pode acontecer por várias razões, como por exemplo, má qualidade dos aparelhos ou dos reagentes, falta de preparo do operador, etc.
O cálculo de rendimento de uma reação química é feito a partir da quantidade obtida de produto e a quantidade teórica (que deveria ser obtida).
Quando não houver referência ao rendimento de reação envolvida, supõe-se que ele tenha sido de 100%.
Exemplo:
Num processo de obtenção de ferro a partir do minério hematita (Fe2O3), considere a equação química não-balanceada:

Utilizando–se 480g do minério e admitindo-se um rendimento de 80% na reação, a quantidade de ferro produzida será de:
Equação Balanceada: 
Dados:  1Fe2O3 = 480g                                              
2Fe = x (m) com 80% de rendimento
MM Fe2O3 = 160g/mol
MM Fe = 56g/mol

x = 336g de Fe
Cálculo de Rendimento:

x = 268,8g de Fe


CÁLCULO DO REAGENTE LIMITANTE E EM EXCESSO:
Para garantir que a reação ocorra e para ocorrer mais rápido, é adicionado, geralmente, um excesso de reagente. Apenas um dos reagentes estará em excesso. O outro reagente será o limitante.
Estes cálculos podem ser identificados quando o problema apresenta dois valores de reagentes. É necessário calcular qual destes reagentes é o limitante e qual deles é o que está em excesso. Depois de descobrir o reagente limitante e em excesso, utiliza-se apenas o limitante como base para os cálculos estequiométricos. 
Exemplos:
1) Zinco e enxofre reagem para formar sulfeto de zinco de acordo com a seguinte reação:
Reagiu 30g de zinco e 36g de enxofre. Qual é o regente em excesso?
Balancear a reação química: 
Dados:
Zn = 30g
S = 36g

Transformar a massa em gramas para mol:
              
                                               
                      

Pela proporção da reação 1mol de Zn reage com 1mol de S.
Então 0,46mol de Zn reage com quantos mols de S?
Pode ser feita uma regra de três para verificar qual regente está em excesso:
 x = 0,46mol de S
Então 1mol de Zn precisa de 1mol de S para reagir. Se temos 0,46mol de Zn, prrecisamos de 0,46mol de S, mas temos 1,12mol de S. Concluimos que o S está em excesso e, portanto o Zn é o regente limitante.
2) Quantos gramas de ZnS será formado a partir dos dados da equação acima?
Para resolver esta pergunta, utiliza-se somente o valor do reagente limitante.

x = 44,68g de ZnS
Algumas constantes e conversões úteis:
1atm = 760mmHg = 101325Pa
1Torr = 1mmHg
R= 0,082atm.L/mol.K
R= 8,314/mol.K
R= 1,987cal/mol.K
Número de Avogadro: 6,02.1023
1mL = 1cm³
1dm³ = 1L = 1000mL
1000Kg = 1ton
1Kg = 1000g
1g = 1000mg
1nm = 1.10-9m

http://www.soq.com.br/conteudos/em/estequiometria/p1.php
http://www.soq.com.br/conteudos/em/estequiometria/p2.php
http://www.soq.com.br/conteudos/em/estequiometria/p3.php
http://www.soq.com.br/conteudos/em/estequiometria/p4.php
http://www.soq.com.br/conteudos/em/estequiometria/p5.php
http://www.soq.com.br/conteudos/em/estequiometria/p6.php


Postar um comentário

0 Comentários